# Quantifying radiative perturbations from observations

and application to the short-term water vapor feedback

Tyler Thorsen<sup>1,2</sup> Seiji Kato<sup>1</sup> Fred Rose<sup>1,3</sup>

- Understanding the variability and response of Earth's radiation budget to
  perturbations requires isolating each component of atmosphere's contribution to the
  energy budget.
- Mostly motivated by the need evaluate feedbacks in GCMs

- Understanding the variability and response of Earth's radiation budget to
  perturbations requires isolating each component of atmosphere's contribution to the
  energy budget.
- Mostly motivated by the need evaluate feedbacks in GCMs
  - Partial radiative perturbation (PRP) calculations: calculations that substitutes one-at-a-time a variable from the perturb climate into the control climate.

(Wetherald and Manabe 1988)

- Understanding the variability and response of Earth's radiation budget to perturbations requires isolating each component of atmosphere's contribution to the energy budget.
- Mostly motivated by the need evaluate feedbacks in GCMs
  - Partial radiative perturbation (PRP) calculations: calculations that substitutes one-at-a-time a variable from the perturb climate into the control climate. (Wetherald and Manabe 1988)
  - Radiative kernels: separates the radiative response and the perturbations (Held and Soden 2000; Soden and Held 2006; Soden et al. 2008)
    - Fewer computations: a single radiative calculation can be consistently applied across different climate models.
    - Radiative kernel have become an indispensable tool for GCM feedback studies

# Observed radiative perturbations

- GCM-derived radiative kernels also been applied to observations in attempt to
  constrain climate feedbacks (Dessler 2008, 2010, 2013; Dessler and Wong 2009; Masters 2012; Dessler and Loeb 2013;
  Gordon et al. 2013, Zhou et al. 2013, 2014; Ceppi 2016)
- Not yet clear how feedbacks in the current climate relate to those under a long-term global warming scenario

(Trenberth et al. 2010; Dessler 2010, 2013; Chung et al. 2012; Gordon et al. 2013; Zhou et al. 2015)

# Observed radiative perturbations

- GCM-derived radiative kernels also been applied to observations in attempt to constrain climate feedbacks (Dessler 2008, 2010, 2013; Dessler and Wong 2009; Masters 2012; Dessler and Loeb 2013; Gordon et al. 2013, Zhou et al. 2013, 2014; Ceppi 2016)
- Not yet clear how feedbacks in the current climate relate to those under a long-term global warming scenario

```
(Trenberth et al. 2010; Dessler 2010, 2013; Chung et al. 2012; Gordon et al. 2013; Zhou et al. 2015)
```

• But, there is a concerted effort to determine how observations can best be used to understand climate feedbacks and sensitivity (Loeb et al. 2016; Forster 2016)

### Observed radiative perturbations

- GCM-derived radiative kernels also been applied to observations in attempt to
  constrain climate feedbacks (Dessler 2008, 2010, 2013; Dessler and Wong 2009; Masters 2012; Dessler and Loeb 2013;
  Gordon et al. 2013, Zhou et al. 2013, 2014; Ceppi 2016)
- Not yet clear how feedbacks in the current climate relate to those under a long-term global warming scenario

```
(Trenberth et al. 2010; Dessler 2010, 2013; Chung et al. 2012; Gordon et al. 2013; Zhou et al. 2015)
```

• But, there is a concerted effort to determine how observations can best be used to understand climate feedbacks and sensitivity (Loeb et al. 2016; Forster 2016)

- Limited comparisons of GCM vs. observational-based kernels (different GCM kernels show relatively small differences)
- Would be attractive to perform calculations based purely on observations

Dataset that computes the individual contributions to radiative flux variability using observational datasets

# Dataset that computes the individual contributions to radiative flux variability using observational datasets

#### Applications:

• Examine feedbacks in the observational record within a consistent framework and construct observationally-based radiative kernels

# Dataset that computes the individual contributions to radiative flux variability using observational datasets

#### Applications:

- Examine feedbacks in the observational record within a consistent framework and construct observationally-based radiative kernels
- Provide general insight into the variability of the radiation budget

# Dataset that computes the individual contributions to radiative flux variability using observational datasets

#### Applications:

- Examine feedbacks in the observational record within a consistent framework and construct observationally-based radiative kernels
- Provide general insight into the variability of the radiation budget
  - Useful where radiative effects are correlated among parameters.
    - E.g. clouds: compliment to the cloud radiative effect (CRE, total clear-sky fluxes)

# Dataset that computes the individual contributions to radiative flux variability using observational datasets

#### Design:

• "On-demand" processing to allow for the flexible calculation of flux perturbations

# Dataset that computes the individual contributions to radiative flux variability using observational datasets

#### Design:

- "On-demand" processing to allow for the flexible calculation of flux perturbations
  - Perturb any combination of variables (e.g. water vapor, clouds) and specific variable dimensions (e.g. pressure level)
  - Select resulting (spectral) flux perturbations from any level of the atmosphere

# Dataset that computes the individual contributions to radiative flux variability using observational datasets

#### Design:

- "On-demand" processing to allow for the flexible calculation of flux perturbations
  - Perturb any combination of variables (e.g. water vapor, clouds) and specific variable dimensions (e.g. pressure level)
  - Select resulting (spectral) flux perturbations from any level of the atmosphere
- Easy to incorporate multiple datasets for each input

# PRP calculations

$$\partial F_{\Delta x}^f = F(x, y_1, ..., y_N) - F(\overline{x}, y_1, ..., y_N)$$
 (1)

• Flux (F) difference of monthly means (x,y) and climatological monthly means  $(\overline{x},\overline{y})$ 

$$\partial F_{\Delta x}^f = F(x, y_1, ..., y_N) - F(\overline{x}, y_1, ..., y_N)$$
 (1)

• Flux (F) difference of monthly means (x,y) and climatological monthly means  $(\overline{x},\overline{y})$ 

Can also compute the same thing relative to a different base state:

$$\partial F_{\Delta x}^{b} = F(x, \overline{y_1}, ..., \overline{y_N}) - F(\overline{x}, \overline{y_1}, ..., \overline{y_N})$$
 (2)

$$\partial F_{\Delta x}^{f} = F(x, y_1, ..., y_N) - F(\overline{x}, y_1, ..., y_N) + O^{f}(\Delta x)$$
 (1)

• Flux (F) difference of monthly means (x,y) and climatological monthly means  $(\overline{x},\overline{y})$ 

Can also compute the same thing relative to a different base state:

$$\partial F_{\Delta x}^{b} = F(x, \overline{y_1}, ..., \overline{y_N}) - F(\overline{x}, \overline{y_1}, ..., \overline{y_N}) + O^{b}(\Delta x)$$
 (2)

•  $O^f(\Delta x)/O^b(\Delta x)$ : truncation error

$$\partial F_{\Delta x}^{f} = F(x, y_1, ..., y_N) - F(\overline{x}, y_1, ..., y_N) + O^{f}(\Delta x)$$
 (1)

• Flux (F) difference of monthly means (x,y) and climatological monthly means  $(\overline{x},\overline{y})$ 

Can also compute the same thing relative to a different base state:

$$\partial F_{\Delta x}^{b} = F(x, \overline{y_1}, ..., \overline{y_N}) - F(\overline{x}, \overline{y_1}, ..., \overline{y_N}) + O^{b}(\Delta x)$$
 (2)

•  $O^f(\Delta x)/O^b(\Delta x)$ : truncation error

Reduce error by averaging the forwards (f) and backwards (b) difference

$$\partial F_{\Delta x} = \frac{\partial F_{\Delta x}^f + \partial F_{\Delta x}^b}{2} + O(\Delta x^2) \tag{3}$$

$$\partial F_{\Delta x}^f = F(x, y_1, ..., y_N) - F(\overline{x}, y_1, ..., y_N) + O^f(\Delta x)$$
 (1)

• Flux (F) difference of monthly means (x,y) and climatological monthly means  $(\overline{x},\overline{y})$ 

Can also compute the same thing relative to a different base state:

$$\partial F_{\Delta x}^{b} = F(x, \overline{y_1}, ..., \overline{y_N}) - F(\overline{x}, \overline{y_1}, ..., \overline{y_N}) + O^{b}(\Delta x)$$
 (2)

•  $O^f(\Delta x)/O^b(\Delta x)$ : truncation error

Reduce error by averaging the forwards (f) and backwards (b) difference

$$\partial F_{\Delta x} = \frac{\partial F_{\Delta x}^f + \partial F_{\Delta x}^b}{2} + O(\Delta x^2) \tag{3}$$

 From monthly-mean inputs, climatologies are constructed and the variables combined to make the 4 sets of inputs → Fu-Liou radiative model

# Inputs (mostly) from CERES datasets

- Clear-sky: GEOS | AIRS (AIRX3STM)
   temperature, water vapor, ozone, skin temperature
- Clouds: SYN | C3M fraction, base, top, phase, optical depth, size
- Aerosol: MATCH optical depth, vertical distribution, type
- Gases: AIRS (AIRS3C2M/AIRX3STM)
   carbon dioxide, methane
- Gases: NOAA ESRL (global means) nitrous oxide, CFC-11, CFC-12, HCFC-22
- Surface albedo: SAH
   parameterization spectral dependence
- Surface emissivity: IGBP LUT

# Inputs (mostly) from CERES datasets

- Clear-sky: **GEOS** | **AIRS** (AIRX3STM) temperature, water vapor, ozone, skin temperature
- Clouds: SYN | C3M fraction, base, top, phase, optical depth, size
- Aerosol: MATCH optical depth, vertical distribution, type
- Gases: AIRS (AIRS3C2M/AIRX3STM)
   carbon dioxide, methane
- Gases: NOAA ESRL (global means) nitrous oxide, CFC-11, CFC-12, HCFC-22
- Surface albedo: SAH
   parameterization spectral dependence
- Surface emissivity: IGBP LUT

#### Clear-sky:

- ► GEOS = GMAO assimilation (v5.4.1) (3hr)
- ► AIRS = Atmospheric Infrared Sounder L3 product (v6)

# Inputs (mostly) from CERES datasets

- Clear-sky: **GEOS** | **AIRS** (AIRX3STM) temperature, water vapor, ozone, skin temperature
- Clouds: SYN | C3M fraction, base, top, phase, optical depth, size
- Aerosol: MATCH optical depth, vertical distribution, type
- Gases: AIRS (AIRS3C2M/AIRX3STM)
   carbon dioxide, methane
- Gases: NOAA ESRL (global means) nitrous oxide, CFC-11, CFC-12, HCFC-22
- Surface albedo: **SAH**parameterization spectral dependence
- Surface emissivity: IGBP LUT

#### Clear-sky:

- ► GEOS = GMAO assimilation (v5.4.1) (3hr)
- ► AIRS = Atmospheric Infrared Sounder L3 product (v6)

#### Clouds:

- ightharpoonup SYN = MODIS + GEO (3 hr)
- ► C3M = CERES CALIPSO CloudSat MODIS (coming soon)

# Inputs (mostly) from CERES datasets

- Clear-sky: **GEOS** | **AIRS** (AIRX3STM) temperature, water vapor, ozone, skin temperature
- Clouds: SYN | C3M fraction, base, top, phase, optical depth, size
- Aerosol: MATCH optical depth, vertical distribution, type
- Gases: AIRS (AIRS3C2M/AIRX3STM)
   carbon dioxide, methane
- Gases: NOAA ESRL (global means) nitrous oxide, CFC-11, CFC-12, HCFC-22
- Surface albedo: SAH
   parameterization spectral dependence
- Surface emissivity: IGBP LUT

#### Clear-sky:

- ► GEOS = GMAO assimilation (v5.4.1) (3hr)
- ► AIRS = Atmospheric Infrared Sounder L3 product (v6)

#### Clouds:

- ightharpoonup SYN = MODIS + GEO (3 hr)
- ► C3M = CERES CALIPSO CloudSat MODIS (coming soon)

Focus here on 13 years of SYN + GEOS/AIRS (Sept. 2002 – Aug. 2015)

**1** Perturbations add linearly:  $\Delta F = F(y_1,...,y_N) - F(\overline{y_1},...,\overline{y_N}) \approx \sum_{i=1}^n \partial F_{\Delta x_i}$ 

- **①** Perturbations add linearly:  $\Delta F = F(y_1,...,y_N) F(\overline{y_1},...,\overline{y_N}) \approx \sum_{i=1}^n \partial F_{\Delta x_i}$
- 2 Reasonably accurate to use of monthly mean inputs

- **①** Perturbations add linearly:  $\Delta F = F(y_1,...,y_N) F(\overline{y_1},...,\overline{y_N}) \approx \sum_{i=1}^n \partial F_{\Delta x_i}$
- Reasonably accurate to use of monthly mean inputs
  - Fluxes from monthly-mean inputs vs. monthly average of fluxes
    - Global-mean bias = -0.6, -1.8  $W/m^2$  (SW, LW)

- **①** Perturbations add linearly:  $\Delta F = F(y_1,...,y_N) F(\overline{y_1},...,\overline{y_N}) \approx \sum_{i=1}^n \partial F_{\Delta x_i}$
- Reasonably accurate to use of monthly mean inputs
  - Fluxes from monthly-mean inputs vs. monthly average of fluxes
    - Global-mean bias = -0.6, -1.8  $W/m^2$  (SW, LW)
  - Similar agreement to CERES fluxes
    - Global-mean bias = +0.8,  $-3.6 W/m^2$  (SW, LW)

- **①** Perturbations add linearly:  $\Delta F = F(y_1,...,y_N) F(\overline{y_1},...,\overline{y_N}) \approx \sum_{i=1}^n \partial F_{\Delta x_i}$
- Reasonably accurate to use of monthly mean inputs
  - Fluxes from monthly-mean inputs vs. monthly average of fluxes
    - Global-mean bias = -0.6, -1.8  $W/m^2$  (SW, LW)
  - Similar agreement to CERES fluxes
    - Global-mean bias = +0.8,  $-3.6 W/m^2$  (SW, LW)
- Reproduce the variability as observed by CERES

- **①** Perturbations add linearly:  $\Delta F = F(y_1,...,y_N) F(\overline{y_1},...,\overline{y_N}) \approx \sum_{i=1}^n \partial F_{\Delta x_i}$
- Reasonably accurate to use of monthly mean inputs
  - Fluxes from monthly-mean inputs vs. monthly average of fluxes
    - Global-mean bias = -0.6, -1.8  $W/m^2$  (SW, LW)
  - Similar agreement to CERES fluxes
    - Global-mean bias = +0.8,  $-3.6 W/m^2$  (SW, LW)
- Reproduce the variability as observed by CERES
  - Time series well correlated over much of the globe (expect  $\sim 60^{\circ}\text{S}$ )





# Observed water vapor feedback

# Observed water vapor feedback

|                            | Feedback | Uncertainty | Dataset     |
|----------------------------|----------|-------------|-------------|
| Forster and Collins (2004) | 1.6      | 0.9-2.5     | NVAP, MLS   |
| Dessler et al. (2008)      | 2.04     | 0.94-2.69   | AIRS        |
| Dessler (2013)             | 1.35     | $\pm 0.35$  | ERA-Interim |
|                            | 1.12     | $\pm 0.39$  | MERRA       |
| Gordon et al. (2013)       | 2.19     | $\pm 0.38$  | AIRS        |

• Somewhat similar values (when uncertainties are considered)

# Observed water vapor feedback

|                            | Feedback | Uncertainty | Dataset     |
|----------------------------|----------|-------------|-------------|
| Forster and Collins (2004) | 1.6      | 0.9-2.5     | NVAP, MLS   |
| Dessler et al. (2008)      | 2.04     | 0.94-2.69   | AIRS        |
| Dessler (2013)             | 1.35     | $\pm 0.35$  | ERA-Interim |
|                            | 1.12     | $\pm 0.39$  | MERRA       |
| Gordon et al. (2013)       | 2.19     | $\pm 0.38$  | AIRS        |

Somewhat similar values (when uncertainties are considered)

Revisit this estimate with our PRP calculations, longer datasets (13 yrs), and more surface temperature datasets

# Observed water vapor feedback

|                            | Feedback | Uncertainty | Dataset     |
|----------------------------|----------|-------------|-------------|
| Forster and Collins (2004) | 1.6      | 0.9-2.5     | NVAP, MLS   |
| Dessler et al. (2008)      | 2.04     | 0.94-2.69   | AIRS        |
| Dessler (2013)             | 1.35     | $\pm 0.35$  | ERA-Interim |
|                            | 1.12     | $\pm 0.39$  | MERRA       |
| Gordon et al. (2013)       | 2.19     | $\pm 0.38$  | AIRS        |

Somewhat similar values (when uncertainties are considered)

# Revisit this estimate with our PRP calculations, longer datasets (13 yrs), and more surface temperature datasets

- ullet Compute monthly perturbation to TOA flux caused by tropospheric water vapor:  $\Delta F$
- ullet Feedback = slope of least-squares fit of  $\Delta F$  and surface temperature anomaly

## Observed water vapor feedback



# Observed water vapor feedback



- AIRS feedback is generally smaller
- $\bullet$  AIRS is "tighter": less sensitivity to  $\textit{T}_{\textit{sfc}}$  dataset and better fits

## Observed water vapor feedback



- AIRS feedback is generally smaller
- ullet AIRS is "tighter": less sensitivity to  $T_{\it sfc}$  dataset and better fits
- GEOS in agreement with previous reanalysis estimates
- AIRS feedback nearly half that of previous estimates
  - $\bullet$  D08/G13: different period of data, older versions of datasets, kernels for getting  $\Delta F$



- AIRSv6 feedback smaller than full time series
- HadCRUT3 give largest feedback



- AIRSv6 feedback smaller than full time series
- HadCRUT3 give largest feedback
- AIRSv5 + HadCRUT3 = largest feedback



- AIRSv6 feedback smaller than full time series
- HadCRUT3 give largest feedback
- AIRSv5 + HadCRUT3 = largest feedback
- $\bullet~$  AIRSv5 +~ HadCRUT3 +~ NCAR kernel  $_{\text{(Shell et al. 2008)}} \approx G13$ 
  - AIRSv6/HadCRUT4 increase yield/coverage

## Summary

• Development of dataset that allows for flexible PRP calculations to isolate the contributions to radiative flux variability using observational datasets

- Development of dataset that allows for flexible PRP calculations to isolate the contributions to radiative flux variability using observational datasets
  - Examine feedbacks in the observational record within a consistent framework and construct observationally-based radiative kernels
  - Provide general insight into the variability of the radiation budget

- Development of dataset that allows for flexible PRP calculations to isolate the contributions to radiative flux variability using observational datasets
  - Examine feedbacks in the observational record within a consistent framework and construct observationally-based radiative kernels
  - Provide general insight into the variability of the radiation budget
- Reasonably accurate to use monthy mean inputs, good correlation with CERES anomalies

- Development of dataset that allows for flexible PRP calculations to isolate the contributions to radiative flux variability using observational datasets
  - Examine feedbacks in the observational record within a consistent framework and construct observationally-based radiative kernels
  - Provide general insight into the variability of the radiation budget
- Reasonably accurate to use monthy mean inputs, good correlation with CERES anomalies
- Revisited the observed water vapor feedback
  - GEOS:  $1.21 \pm 0.25 \ W/m^2/K$
  - AIRS:  $1.10 \pm 0.18 \ W/m^2/K$

- Development of dataset that allows for flexible PRP calculations to isolate the contributions to radiative flux variability using observational datasets
  - Examine feedbacks in the observational record within a consistent framework and construct observationally-based radiative kernels
  - Provide general insight into the variability of the radiation budget
- Reasonably accurate to use monthy mean inputs, good correlation with CERES anomalies
- Revisited the observed water vapor feedback
  - GEOS:  $1.21 \pm 0.25 \ W/m^2/K$
  - AIRS:  $1.10 \pm 0.18 \ W/m^2/K$
- ullet Older water vapor feedback estimates using AIRSv5 + HadCRUT3 nearly 2x larger: mostly due to dataset updates (also differences from kernel, length of data)

#### Looking forward:

- AIRS v6.1: overhaul of water vapor retrievals
- Interesting to perform calculations with active sensor clouds (C3M) (likely to decrease water vapor feedback a bit)
- CERES-optimized radiative kernels: "two-pass" calculation to require that the sum of individual flux anomalies match CERES (similar to Sanderson and Shell 2012)

### Use of monthly mean inputs

Fluxes from monthly-mean inputs (PRP\_Month) vs. average fluxes computed in SYN

- Good agreement:
   -0.6, -1.8 W/m<sup>2</sup>
   (SW, LW)
- SYN CERES-derived fluxes:(not shown) +0.8, -3.6 W/m² (SW, LW)



### Use of monthly mean inputs

Fluxes from monthly-mean inputs (PRP\_Month) vs. average fluxes computed in SYN

- Good agreement: -0.6,  $-1.8 W/m^2$  (SW, LW)
- SYN CERES-derived fluxes:(not shown) +0.8, -3.6 W/m² (SW, LW)



# Comparison to CERES (EBAF)



## Comparison to NCAR kernel



- Using NCAR kernel give a (slightly) larger feedback
- Kernel differences: (not shown)

  - Local differences:  $\sim$  20–40% (larger than among different GCMs (Soden et al. 2008))

### Comparison to NCAR kernel (Shell et al. 2008)





## Short vs. Long-term water vapor feedback

• Gordon et al. (2013): short-term feedbacks in CMIP3 models converge to 15% of their long-term value after 25 years